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Conservation laws of the BBM equation 
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Abstract. It is proved that the BBM equation uXxt = U, - uu, has no conservation laws except 
those found by Benjamin, Bona and Mahony. 

1. Introduction 

It is well known that the Korteweg-de Vries equation, 

U, + U, + uu, + U,,, = 0, 

has N-soliton solutions which describe elastic interaction of solitary waves in shallow 
water. This remarkable property is related to the fact that the K d v  equation is a 
completely integrable Hamiltonian system without stochastisation possessing an infinite 
number of conservation laws. 

As an alternative model for the long wave motion in nonlinear dispersive systems, 
Benjamin et al (1972) proposed the regularised long wave (RLW, or BBM) equation, 

U, + U, + uu, - U,,, = 0. 

These authors (see also Bona et a1 1983) argue that both equations are valid at the 
same level of approximation, but that the BBM does have some advantages over the 
K d v  from the computational mathematics viewpoint. 

Numerical experiments first carried out by Abdulloev et a1 (1976) and then by 
others (see Bona et a1 1983) show that the BBM equation admits soliton solutions whose 
interaction is inelastic though close to elastic. Considering the BBM equation as a 
‘deformation’ of the K d v  equation, we see that the latter displays surprising stability 
of its seemingly fragile mathematical properties. Therefore a natural question arises 
as to whether the behaviour of the solutions of the BBM equation can be explained in 
terms of conservation laws. 

Below, we write the BBM equation as U,,, = U, - uu, (it takes this form after replacing 
U by - 1 - U in the original version). Olver (1979) showed that this equation has no 
other conserved densities depending only on x, U, U,, U,,, . . . than those indicated by 
Benjamin et a1 (1972): U (mass), (u2+u f ) /2  (energy), and u3/3 (momentum). This 
result, however, does not imply that the BBM equation is not a completely integrable 
Hamiltonian system, since there might exist other conserved densities which depend 
also on t and t-derivatives of U and U,. Note that from the point of view adopted by 
Olver these conserved densities, if they exist, can be considered also as functions of 
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x, U and x-derivatives of U which are however non-local, since, for example, U,= 

In this paper we prove that the BBM equation does not possess further conservation 
laws of this kind, either. Perhaps this result accounts for the inelastic mode of 
interaction of the soliton solutions. However, the numerical works referred to above 
seem to suggest that the BBM equation may have other conserved densities which must 
be really non-local (i.e. not functions of t, x, U and arbitrary derivatives of U )  because 
of our result. 

The method we apply for enumerating the conservation laws is based on the 
calculation of a certain part ( E  is') of the Vinogradov's spectral sequence (Vinogradov 
1978) associated with the given equation, which is carried out by solving an auxiliary 
linear differential equation. Our method is valid for a very broad class of (systems of) 
nonlinear partial differential equations. 

In this paper, we present our calculation of the space of conservation laws of the 
BBM equation together with a brief account of the necessary theory, which we hope 
will clarify the general character of our method, although all calculations could have 
been done without referring to the Vinogradov's spectral sequence. 

( 1  - Of;)-'(  UU,). 

2. Equations 

Let T: N - t M  be a smooth bundle given in local coordinates by 
r ( x I , .  . . , x,, U', . . . , U"') = (XI,. . . , x,), let TkTTk: Nk + kf be its kthjet bundle, Nk being 
the manifold with coordinates x,, U' and all partial derivatives of the latter over the 
former up to the order k, and R = Nk a kth-order differential equation with independent 
variables x, ranging over M and dependent variables U' ranging over the fibre of T. 
Locally, R can be defined as FI = . . . = F, = 0 where F, are smooth functions on Nk. 
Globally, R is the set of all points in Nk satisfying F=O where F is a section of a 
bundle over Nk with local components F , ,  . . . , F, 

Denote by R,= N ,  the infinite prolongation of R. In the standard coordinate 
system x,, U', with 1 9 i S n, 1 G j S m and U being an arbitrary multi-index consisting 
of xI ,  . . . , x,, R, is the submanifold obtained by equating F and its various total 
derivatives to zero. 

Example. Take N = R3 with coordinates (x, f, U), M = R2 with coordinates (x, f )  and 
T :  M -t N given by (x, f, u)-(x, 1 ) .  The BBM equation is the submanifold of N3 given 
by 

U X X f  = U, - uu,. 

Taking into account all differential consequences of ( 1 )  

U X X X f  = U,, - uuxx - U:, 
U x m  = urr - uuxt - UxUz, etc., 

we arrive at the submanifold R, of N ,  which, in this case, is topologically trivial, i.e., 
admits a global coordinate system. As such one can take 

x, f, { U k ;  k ~ O } , { V k ;  k 2  1 } , { W k ;  k 3 2 )  (2) 
where uk = uXx,,,, (k  times x), uk = U ,,,,., ( k  times t), wk = u,, . . .~ (k  - 1 times t ) .  
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Let A and A stand for the algebras of smooth functions on N ,  and R,, respectively: 
A = A / $  where 9 is the ideal of functions vanishing on R,. For the BBM equation, 
9 is differentially generated by the function F = U,, - U, + uux, and A is identical with 
the algebra of all smooth functions of a finite number of variables (2). Obviously, 
A = UnaO A,, A, being the subalgebra of functions depending only on x, t ,  uk, vk, wk 
with k s n. 

Here and below, the bar over symbols means restriction of objects and maps to 
the manifold R,. Since the ideal 9 is closed under the total derivative operators, the 
latter can be restricted to R,. 

Example. In the coordinate system (2) of the BBM equation, the total derivatives over 
x and t are written as 

I), = a / a t  + (D,uk)a /auk + vk+l a/avk + C wk+l a/awk 
k a O  k =  I k = 2  

where D , U k  can be determined recursively: 

and we put wI = u1 and uo= uo for brevity. 

3. Conservation laws 

Let (ao, do)  stand for the 'horizontal de Rham complex' of the manifold N,, i.e., 
~ o = X k a O ~ , " ,  where a," is the space of all differential k-forms locally written as 

E A, and doo is obtained from d o  by substituting 
each du', by ujx, dx, +. . .+ ujxn dx, (in other words, by imagining that U', which is an 
independent coordinate on N ,  is really a function of x i , .  . . , x,). Thus 

= ZJl . . , ik  dxi, A . . . A dxik with 

doo = 2 1 Di(J ,.._ i k )  dxi A dxi, A . .  . A  dxik. 
i l . . . . , ! k  i 

Since the ideal 9 is closed under the total derivatives Di, we can restrict do to the 
prolonged equation R, and thus amve at the 'horizontal de Rham complex of the 
equation R,', 

d d 
. . , 3  a;-, A a," a,"+1+ . . . .  (3) 

Following (Tsujishita 1982, Vinogradov 1984a, b), we define the space of conserva- 
tion laws of the equation R to be 

H , " - ' ( R )  = Ker dolfi,"-'/Im dolfi:-2, 

the ( n  - 1)th cohomology group of the complex (3 ) .  
This definition coincides in fact with the usual one. We explain this for the case 

M = R2 with coordinates x, t .  A conservation law is represented by a one-form 
o = T dx + X  dt, T, X E 4 which is closed in the complex (3), i.e., d0o = 0. The latter 
is equivalent to DXX = I),T, so that T and X are just the classical conserved density 
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and conserved flux. If T = D,P and X = D,P for some function P, the conservation 
law is regarded as trivial; correspondingly, the one-form w = dP is exact and defines 
the zero cohomology class. 

Note that our understanding of trivial conservation laws differs somewhat from 
that adopted by Olver (1979): the latter demands only that T = D,P. Thus for instance, 
the one-form (U: - U*) d t  is not exact in the horizontal de Rham complex of the 
equation U,, = U, yet the relation D,( U', - u 2 )  = 0 yields a trivial (according to Olver) 
conservation law, since its conserved density is zero. The space of conserved densities 
is in fact a factor space of H " - ' ( R ) .  

Proposition. If  for some equation over R2 with coordinates x, t one has Ker D, = C"( t )  
( the set of all functions o f t ) ,  then the linear dependence of conserved densities implies 
linear dependence of corresponding conservation laws. 

Proof: Let D,T = D,X and T = D,P for some P E A. Then D x ( X  - D , P )  = 0 whence 
by the assumption X - D,P = f E C"( t )  and X = D,( P + F )  where F is a primitive of 
the function f: Observe finally that T = D,( P + F ) .  

4. Kernels of total derivations 

We have seen, in § 3, that the size of Ker D, is of a certain interest in the study of 
conservation laws. We now compute the spaces Ker D.x and Ker 0, for the BBM 

equation. We note that the lemma 1 below implies, by virtue of the proposition of 
§ 3, that, for the equation in question, both viewpoints on the linear dependence of 
conservation laws actually coincide. The two lemmas we are going to prove will be 
essentially used in 9 7 .  

Lemma 1 .  Ker fix = C"(t) .  

Proof: Let DJ= 0 and f E A,,. The coefficient of u , + ~  in Dd aflau,, must vanish. 
Hence f does not depend on U, and the coefficient of U,, af/du,-,,  must vanish. Thus 
we come up to af/au1 = O .  Similarly, df /av , ,  = 0. Now DJ= (Xf)u, + Yf where 

Set XI = [ X ,  Y], X 2  = [X, XI], X,+, = [XI, X,], i 5 2. Then X ,  = -a/av,-,. Hence X f  = 
~ f =  o implies af/au,-, = 0. The coefficient of v , - ~  in DJ equals now aylaw,. Since 
this must vanish we have f E A,-,, and the lemma is proved by induction. 

Lemma 2 .  Ker D, = C"(x). 

Proof: From f E Ker D, n A, we derive step by step df/avn = af /aw,  = . . . = df /av2  = 
af/av,  = 0. Then we have D,f = ( X o f ) v l  +(XI f ) w 2  + Yf where 

a a a  
xo=-+-+-+. . . 

a u  au2 au, 
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a a a  x, =-+-+-+. . . 
a u l  au ,  au,  

Putting Xi+l = - [Xo ,  [ X , ,  Y ] ] ,  i 3 1, we get X ,  = a/au,  on the algebra of functions 
Cm(x, t ,  U, u l ,  . . . , U,, uI, w 2 ) ,  which completes the proof of the lemma. Note also that 
X n - l  = a/du,_,  on this algebra, which will be used in 0 7. 

5. Vinogradov's spectral sequence 

Since the notion of conservation law has an essentially homological nature, it can be 
studied with the machinery of algebraic topology. The suitable tool is Vinogradov's 
spectral sequence (Vinogradov 1978, 1984a, Tsujishita 1982). For a general account 
of spectral sequences, see Godement (1958). 

The Vinogradov's spectral sequence of a differential equation R c N k  is constructed 
in the following way. In the de Rham algebra fl of the manifold N,, consider the 
ideal % consisting of all differential forms vanishing on the manifolds j , ( s ) ( M )  c N,  
where j m ( s )  : M --z N ,  is the infinite jet of a local section s of the bundle i~, namely, 

% = E nijm(~)*(w) = o  v s E r,,&)}. 
That is, w lies in % if it vanishes as soon as we imagine the ut's to be really the partial 
derivatives of functions of x l r . .  . , x,. 

Example. For the bundle R3 - R 2  mentioned in 0 2 the form 6u, = du, - U,, d x  - u , ~  d t  
belongs to % since every function u ( x ,  t )  satisfies du, = (au,/a.x) dx +( (?u , /d t )  dt. It 
is easy to prove that the ideal % is generated by the set ' % = % n R' of its elements of 
degree one and that the one-forms 6u, ( U  being arbitrary multi-index) constitute a 
basis for the A-module I % ,  i.e., every element of ' %  is a unique linear combination of 
6u,'s with function coefficients. 

Obviously, % is closed under the exterior differentiation ( d % =  %) and so are its 
powers gP = % A . . . A % ( p  times). Restricting these to the prolonged equation, we get 
a decreasing filtration 

a= go3 g = g 1 3 g 2 3 . .  . .  

The Vinogradov's spectral sequence EF4(  R )  is by definition the spectral sequence 
associated in the usual way (Godement 1958) with the filtered cochain complex ,-j, 6). 
By construction, EF4(  R )  is a first quadrant spectral sequence and converges to H*(R,), 
the de Rham cohomology of the manifold R, .  

The importance of Vinogradov's spectral sequence for our problem lies in the 
fact that E o ( R )  contains the complex (3) as its 0th column and hence the space of 
conservation laws of R is identified with E;."- ' (R) .  

6. Normal equations 

The main theorem of Vinogradov ( 1978) describing the Vinogradov's spectral sequence 
of a differential equation is valid for a wide class of not overdetermined equations 
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called in Vinogradov (1984a) normal. Here is a definition of a normal equation R c Nk 
which slightly differs from that of Vinogradov (1984a) but is a bit more suitable in 
practice: R is normal if it enjoys the following two properties: 

( 1 )  (cf Q 2 ) .  R can be presented globally as F = 0 where F E  r( .rrE[), 6 being a vector 
bundle over M .  

Example. For the BBM equation, we can take F = U,, - U, + uu, ( 6  being the trivial 
one-dimensional bundle). 

( 2 ) .  For each point x E R, there is, in T:M,  y = T k ( x ) ,  a non-characteristic covector 
for the operator eF For an invariant geometric definition of the 'universal linearisation 
operator' eF, see Vinogradov (1984a); here we confine ourselves to its coordinate 
description (which is sufficient because both bundles .rr and 6 related to the BBM 
equation are trivial). The operator e. is given by the matrix with rn = dim .rr columns 
and r = dim 6 rows whose components are 

the summation going over all multi-indices U ;  F , ,  , . . , F, being the components of F, 
and D, the total derivative operator ( Dx,, , ,xa = D,, 0 Ox,  0 . . . 0 Dx,,) ,  A non-characteristic 
covector for the operator tF  at x E Nk is by definition an element p = ( pl ,  . . . , p n )  of 
T : M  ( y = r  k ( x ) )  for which the symbol of (.evaluated at p ,  i.e., the matrix 

has rank r, where \U\ = k and pv = p I ,  . . . p , ,  for U = x , ,  . . . x , ~ ,  

Example. The symbol of eF fo r  the BBM equation is p : p 2 .  So for each point of N3, 
every covector ( pl,  p z )  with pl p 2  # 0 is non-characteristic and condition 2 is satisfied. 
Note that condition 2 is valid for any equation solvable in the highest derivative. For 
less trivial examples related to condition 2, see Vinogradov (1984b, 0 4.4). 

In a similar way, one can easily verify that this class contains almost all 'famous' 
equations: the Kdv, sine-Gordon, wave, Schrodinger equations, Euler equation of 
hydrodynamics, etc. 

We remark that the infinite prolongation R, of a normal equation R = { F  = 0} is 
defined by the ideal differentially generated by the components of F, that is, the 
submanifold R, c N ,  can be described by the equations D,F, = 0. Note also that 
F = O  is not overdetermined, i.e., r s  m. 

Theorem (Vinogradov 1978, 1984a). For a normal equation R = { F  = 0) all the terms 
E F9(  R )  except for those with p = 0 or q = n or q = n - 1 are zero ; E ; * " - I (  R )  = Ker e",. 

Here e*, denotes the conjugate operator derived from (4) by the transposition and 
taking the conjugate of each scalar element of the matrix according to the usual rules: 
( K  0 L)* = L* Q K *, DT = - Di and f* = f for the function coefficient; FT is the restric- 
tion of e*, to R,. 

For a normal equation, R ,  is an affine bundle over R so that the cohomology of 
R, coincides with that of R. If the latter is trivial (as is the case with the BBM equation), 
we conclude from Vinogradov's theorem and the general properties of spectral 
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sequences (Godement 1958) that the space of conservation laws E!*"-'( R )  is injected 
by the differential dypn-' into K e r f $  and the image of this injection coincides with 
Ker d ; + - ' .  The computation of Ker p$ constitutes the first and as a rule the most 
difficult task in finding the conservation laws. 

7. Ker e'*, for the BBM equation 

We come now to realise the plan sketched in $ 5  3-6, for the BBM equation. Since 
F = U,,, - U, + uu, we have by (4) 

e F  = D;D, - D, + U D ,  +U,, 

(U, standing here for the operator of multiplication by U,), hence 

e$=-D:D,+D,-uD, 
and 

FT. = --D:D, + D, - U& 
Let 4 E A and ?*,(+) = 0. Choose n so that 4 E &\An-l  (see § 2 ) .  We show first 

First we assume n 2 2. 
The operator F$ raises the filtration index by two: f*,(A,,,) c A,,,+*. Equating the 

that n S 2 and then 4 = a + bu + c( U' + U,,) ( a ,  b, c are constants). 

coefficients of u,+~, w,+' and w , + ~  in Fz(4 )  to zero, we obtain 

By lemmas 1 and 2, we can write 4 as 

4 = all, +pun +* 

Dt a+/aw,  +2Dx  a+/av,-, =o. 

L3.f; a*/av,-, +2D, a*/aw, = pul.  

D, a+/aw,  +2 a+/av,_, E c"(t), 
D, a*/ati,-, + 2  atl//aw, -@U E c"(t), 

(D:-4) aglaw,  + 2 p u ~  c"(t). 

where ct E C"(x), p E C"( t )  and E A, does not depend on U,, ti, and 

Now substituting ( 5 )  into a( f " , ) /av ,  = 0, we obtain 

The equations (6) and (7) can be rewritten by lemma 1 as 

whence 

Note that 

- 4 = eZx o D, o e-4, o D, o e'", (8) 

(9) 

so 

D,(e-4xD,(e2x a + / a w , ) )  + 2 e - 2 X p ~  E C"(t)  e-'". 

Lemma3. I f f €  C"(x, t ,  U), thenfe Im fix if and only i f f =  au2 + b, with a, b E C"(x, t )  
and a = a,,. 
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ProoJ: Suppose Dxg =f with g E &,\A,-,. An argument similar to the one used in 
the proof of lemma 1 shows first that g does not depend on U,,.. ., U, nor on U,. 

Then, in the notation of lemma 1, we have 

Y g = f  and Xg=O. 

We obtain successively 

xlg = [ X ,  Ylg = X f = f u ,  

x2g = [ X ,  X , l g  = x2g = f u u ,  

x 3 g  = [ X I ,  x21g  = X,f"U - X2f" = 0, 

since X I  and X 2  are zero operators on C2(x, t, U). Similarly, we obtain X,g = 0 for n 3 3. 
If m 3 3, then ag/au,-, = -X,g = 0. Hence ag/aw, = a( D,g)/au,-, = 0. 
If m = 2, then by dg /dv ,  = -X2g and U a g / a w z  =_[ Y, X , ] g ,  we obtain g = au, + bwz + c 

with a, b, C E  Cs(x, t ,  U). I t  is easy to see that Dxg E Cm(x,  t ,  U )  if and only if a E 

Cx(x, t ) ,  b = -ax, a - axx = 0, c = -fa,u2 + A  ( A  E CD(x, t ) )  and f =  Dxg = -;a,' + A x .  

This lemma shows, by ( 9 ) ,  p = O .  The equation (9) implies now, by lemma 1, that 
aqj/dw, E Cr(x, t ) .  Hence a$/du,- ,  E Cr(x, t ) .  

We have proved the following lemma. 

Lemma 4. If # E &\An-, ( n  5 2) satisfies e*,# = 0, then 

4 = cyu, + yw, +Sun-, +x. 

Yxx +2Sx = 0, 

Here (Y E C"(x), y, S E  Cm(x, t ) ,  x E and 

2 Y x  + Sxx  = 0, ax/av,- ,  = 0. 

Suppose now n 3 3. Substituting (10) into a(e;*,4)/aun = 0, we obtain 

Dt a x / ~ ~ , - ~ = ( n + l ) a u ,  +u,u. 

Lemma 5. If g E A is linear over Cr(x, t )  in U,, i 3 0, and g E Im D,, then g = 0. 

Proof: Suppose g = D,f for some f~ A,. An argument similar to the one used in the 
proof of lemma 2 shows first that f does not depend on U , ,  u2 , .  . . , U,, w2, . . . , w ,  and 

af/au, = X J =  -[x,,, [X,-, ,  Y ] ] f =  -X,X,_,g = 0,  

since X , = o / a u  +a/au,+ .  . . , X,-, = d/du,-, on A, and g is linear in ut's. 

This lemma implies (Y = 0. 
Substituting 4 = yw, +Sun-, +x in ?*,c$ -0  and considering the coefficients of U,-, 

and w,, we have 

D;2 , i i~ /av , - , t2D,  a x / a w , _ , - y ~ , - ( 2 y , + S ) ~ ,  +Q = o  (12) 

2 0 ,  dx/dv,- ,  +D: ax /dW,- l  - 2 y ~ ,  -?,;U = O .  (13) 
Since the left-hand side of (13) is -yxu modulo Im Ox, lemma 3 implies yx = 0 and by 
( 1  I )  6, = 0. Rewriting (12) and (13) using lemma 1, we obtain 

D , a x l a ~ , _ , ~ 2 a x ~ a w , _ , = ~ ~ + y ~ , + ~ ,  (14) 
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2 a x / a ~ , - ~ + D ,  ax /awn- ,  = ~ Y U  + p  

( D 5 - 4 )  ax/av,-,= 6 ~ ,  + y u 2 - 4 y u  - 2 p .  

with A, p E C"( 2 ) .  Then, by  (12) and (15) 

By (8), we obtain 2e-2XSu E Im D,, whence by lemma 3, 

6 =o. 
(16) implies then 

ax/av,-, = YU +tp + v e2, + 6 e-2x 

with v, 6 E C"( t ) .  
On the other hand, (13) and (14) imply 

( D f ; - 4 )  ax/aw,-,  = - 2 ~ ,  

ax /awn- ,  =;A + p  e2, +7 

whence 

(19) 

with p, 7 E C"( t ) .  By (14), (15),  (18) and (19), we obtain p = - v, 6 = 7. Thus we have 
proved the following. 

3275 

(15) 

Lemma 6. If 9 E An\An_, ( n  3 3 )  satisfies e*,+ = 0, then 

4 = y (  W ,  + U U n - 2 )  + U V n - 2  + T W n -  1 + W ,  

U = fp + v e2, + 6 e-2x 

r = &A - v e*, + 6 e-2x 

(20) 

where y E C"( t ) ,  w E An_,  does not depend on v , - ~ ,  U,,-,, and 

(21) 

( 2 2 )  

with A, p, v, 6 E C"( t ) .  

Now we suppose n 2 4 .  For C#.J of the form (20 ) ,  we have 

- 2  aw aw 
- U,U - D ,  -- 2D,-- - 0  

sun-3 awn -2  

aw aw 
- 0. ~- - 2(  n - 2)yw ,  +2ru ,  + ?-,U - 2D,  -- D', - - a(&#)) 

awn-, a v n - 3  awn-2 
From ( 2 3 ) ,  and using uI = Dx( w2 +;U') and T,, = -2u,, we obtain ytu E Im D,. Hence 
by lemma 3 ,  7, = 0 and we obtain y E R. On the other hand, (24 )  implies T,U E Im ox, 
whence y,  = 0. By (22), v = 6 = 0 and then by (21), we have U, = 0. 

Now ( 2 4 )  and lemma 1 implies 

aw aw 
2- +D,-- 2 ( n  - 2 ) y v l  - 2 m ~  C"(t)  a ~ , - ~  awn-, 

This implies, together with (8) and (23 ) ,  

f( n - 1 ) y eZxu2 - 2 a  eZxu E Im ~3,. 
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Here we used 3 e2xvl = U* e2"(mod Im Dx). Hence by lemma 3, ( y e2x)xx - y e2x = 0. 
Thus y = 0. This contradicts the definition of n. 

Suppose now n = 3. Then by lemma 6, 

4 = y( Wj + UV1)  + (+V I  + TW2 + W 
with Y E  C"(t) ,  w E C"(x, r, U, u I )  and a, T are defined by (21) and (22). From 
a(F$d)/au, = 0, we obtain D, aw/au, = 0, whence w = E U ~  +w' with E E C"(x) and 
W'E A,. Then a 2 8 $ 4 / a v :  = 6y, whence y = 0. 

Finally suppose n c 2. Then lemma4and the equations d ( 8 $ 4 ) / a u 3  = a ( 8 $ 4 ) / a u 2  = 
0 imply 

4 = y(w2+;u2) +&U, + S V ,  +lu + e  
with E, y, 6, I ,  6 E Cm(x, t )  satisfying 27, +ax, = I ,  = 0. 

S = E = 0 and 5, y E R. Then 8$4 = 
K e r f $  is three dimensional and generated by 1, U, u2+iux, .  

ately to the following. 

Then equating the coefficients of u I v , ,  U:, w2 and u2 in F$c$ to zero, .it follows 
= 0 implies 0 E R. Thus we have proved that 

The general properties of Vinogradov's spectral sequence (§ 6) lead one immedi- 

Theorem. The dimension of the space of conservation laws of the BBM equation is not 
greater than 3. 

Since we already know three independent conservation laws of the BBM equation, 
there is no need to pick out those elements of Ei."- l (R)  which are in Ker d ; * " - '  and 
to inverse them (i.e. find corresponding classes in R"-'(R)).  These procedures, 
however, might prove useful for other equations and are described in Duzhin (1982), 
Tsujishita (1982) and Vinogradov (1984 a, b). 
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